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Analytical solution for inviscid flow inside an evaporating sessile drop
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Inviscid flow within an evaporating sessile drop is analyzed. The field equation E2i=0 is solved for the
stream function. The exact analytical solution is obtained for arbitrary contact angle and distribution of evapo-
rative flux along the free boundary. Specific results and computations are presented for evaporation correspond-
ing to both uniform flux and purely diffusive gas phase transport into an infinite ambient. Wetting and non-
wetting contact angles are considered, with flow patterns in each case being illustrated. The limiting behaviors
of small contact angle and droplets of hemispherical shape are treated. All of the above categories are consid-
ered for the cases of droplets whose contact lines are either pinned or free to move during evaporation.
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I. INTRODUCTION

Recently, the problem of sessile drop evaporation has
found prominence in relation to the deposition of particles
that occurs during the drying of colloidal drops. Deposition
in ring patterns (the “coffee ring effect”) influences a variety
of applications: DNA mapping [1,2], ink-jet printing [3-5],
production of crystals [6-8], coating with paint. Apart from
ring patterns, applications include, buckling instability and
skin formation by deposition from polymer solutions [9-11],
and evaporation of liquid drops to cool a hot surface [12].

The understanding of these phenomena requires the deter-
mination of the distribution of evaporative flux along the free
interface and the velocity distribution engendered in the lig-
uid phase due to this evaporation. Depending on the inter-
play of these two factors, the direction of the free-surface
flow can be either toward or away from the contact line.

A number of investigations have previously focused on
this problem. Popov [13] solved exactly for the vapor phase
transport from which the distribution of evaporative flux is
determined. A useful approximate representation of this re-
sult was subsequently developed by Hu and Larson [14] for
contact angles less than 90°. An integral analysis was pre-
sented by Deegan [15-17] and Popov [13] for determining
the radial distribution of the vertically averaged radial veloc-
ity. This result was used to analyze the limit of small contact
angle. A numerical solution was pursued by Fischer [18] for
viscous flow in the lubrication theory limit. Other numerical
efforts have been presented by Hu and Larson [19] and Wid-
jaja et al. [20], who solved the Stokes flow for contact angles
ranging from zero to 90°. A semianalytical solution was ob-
tained by Hu and Larson [19] in the lubrication theory limit.
Tarasevich [21] and Petsi and Burganos [22,23] derived ex-
act analytical solutions for irrotational flow within hemi-
spheres, hemicylinders, and cylindrical caps, respectively.

The focus of the present work is on deriving the exact
analytical solution for the irrotational flow within axisym-
metric evaporating drops of arbitrary contact angle (0= 6,
< 1) and evaporative flux distribution along the free surface.
The behavior is considered within the context of the contact
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line of the droplet being either pinned or free to move during
evaporation. Analytical expressions for the expansion coeffi-
cient are given for the limiting cases of droplets either hav-
ing small contact angle or being hemispherical in shape.

II. GEOMETRY, MODEL, AND SOLUTION
A. Geometry

A sessile drop has an equilibrium shape given by energy
minimization analysis [24]. For small drops, the influence of
gravity on the shape is insignificant and the drop takes the
shape of a spherical cap. The boundary of the spherical cap is
exactly mapped in toroidal coordinates—see Fig. 1. These
are therefore the natural coordinates to adopt in mathemati-
cally analyzing the phenomena.

Flow within the drop is independent of azimuthal angle
[= three dimensional (3D), axisymmetric]. Shown in Fig. 1
is a cut through the toroidal geometry at a given azimuthal
angle ¢. The cross-sectional toroidal coordinates («, 6) are
indicated in the figure along with cylindrical coordinates
(r,z) where, in relation to Cartesian coordinates, r=(x’
+y*)V2. The angle 6, measured in the same sense as the
contact angle 6., is related to the angle B used in [25] by 6
=m—f. The metric coefficients for the toroidal geometry
[25], when written in terms of 6, are then
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FIG. 1. Lines of constant o and € and positive direction of
velocity vector components in toroidal coordinates.
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hy=hg=hy/sinh a=R(cosh a + cos 07", (1)

in which O0=sa<o, —7<f<m, 0<@<2w, and R is the
distance from the z axis to the contact line. The relationships
between toroidal and cylindrical coordinates are

r/sinh a = z/sin #= R(cosh a + cos 6)7". (2)

B. Field equation

The flow within the liquid drop is incompressible. Hence,
V.-V=0, (3)

where V is the velocity vector. In addition, the fluid is taken
to be inviscid and the evaporative flux is assumed to be slow
enough that the flow field in the droplet may be treated as
quasisteady. Consequently, the flow contains no vorticity:

w=V XV=0. (4)

A stream function ¢ may be defined for this axially sym-
metric flow such that it exactly satisfies Eq. (3):

1 a_:p_(cosha+cost9)2a_¢
““heh,d0 R’sinha 90

. (5)

1 oy (cosh a + cos )% dyr
Vym=m—— = . (6)

hohg da R sinha  Jda
The field equation for ¢ follows from writing Eq. (4) for
axially symmetric flow and then substituting V,, and V, in
terms of ¢ from Egs. (5) and (6). In general, for axially
symmetric flows the vorticity is related to the stream func-

tion by
wz_e&[i(ﬂﬁ_w%ﬁ(&a_w)], @
hohol da\hgh,da) ~ 90\ heh, 90

Inserting the metric coefficients for toroidal geometry from
Eq. (1), we have

é d ( cosh a+cos 89
®=—%(cosh a+ cos ) —(——'J/>
R dar sinh oo
. i(cosh a + cos 0&_{#)
00 sinh « J0
= (8/h,)E*. (8)

For inviscid flow, the field equation for ¢ corresponds to w
=0. Or, as seen from the above equation, E>=0.

C. Integration of EZ=0

The discussion below presents the closed-form solution
obtained by integrating E?=0, subject to appropriate
boundary conditions.

1. Separation of variables

The « and 6 variables may be separated in the field equa-
tion E2=0 by letting
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(a, 0) = (cosh a + cos 0)™*f(a)g(6).

The sign of the resulting separation constant is chosen to
obtain eigenfunctions in a. Since 0 < a <%, the associated
eigenvalues are continuously distributed: 0=<7<<oe. As re-
ported in [26], the solution is

i a,6) = (cosh a+ cos 0 _1/2f [a,(7)C; % (cosh a)
0

-12
+ay(1)C T/2+iT(C°Sh a)]

X[ci(7)sinh(76) + c,(7)cosh(70)]d7, 9)

12 *—1/2 .
where C7)};.(x) and C| , =~ (x) are Gegenbauer functions of

the first and second kinds, of order —1/2 [27]. Regarding the
Gegenbauer function of the first kind, its properties relevant
to the present study are given in the Appendix along with the
development of its integral transform and inverse which are
needed.

2. Boundary conditions

To establish boundary conditions on the stream function
i, it is first noted that the velocity components normal to the
axis of symmetry and normal to the solid surface vanish:
V,(0,60)=0 and V,y(a,0)=0. Hence, the stream function is
constant along the symmetry axis and the solid surface.
Since these lines intersect, the constant must be the same for
both. The value of this constant does not affect the predicted
velocities, and hence it may arbitrarily be set to zero. The
corresponding boundary conditions are then

Ha,0)=0 (10)

and

#0,6)=0. (11)

Equation (10) requires c¢,(7)=0. For Eq. (11), it is noted that
CT/_sz(cosh «) becomes infinite along the axis of symmetry
and, therefore, it is required that a,(7)=0.

Therefore, the form of the solution is

oo

e, ) = (cosh a + cos 0)‘1/2f k(7)
0

X Cf,lﬁh(cosh a)sinh(70)dr. (12)
The second « boundary condition is
(o0, 6) = finite, (13)

which is automatically satisfied.

The unknown coefficient k(7) can be written in terms of
the stream function at the free surface using an infinite inte-
gral transform. This transform is based on the Gegenbauer
function as the eigenfunction. It is similar to the Mehler-
Fock transform [28] which is based on Legendre functions.
The required Gegenbauer transform could not be found in
the literature and so they were derived as part of the present
study. The derivation of the required transform and its in-
verse is presented in the Appendix. In particular, the integral
relation between the unknown coefficient k(7) and the stream
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function at the free surface is obtained from using Egs. (A7)
and (A8) in the Appendix. The result is
(7 + 1/4)tanh(7r7)
sinh(76,)

* .0 h a+ cos 6.)"?
(. 6)(cosh @+ cos b.) C7Y2. (cosh a)da.

12+4iT

k(1) =

0 sinh «
(14)

The final boundary condition must therefore relate the
stream function at the free surface to a specified distribution
of evaporative mass flux. This flux is determined by analyz-
ing the gas phase transport of the evaporating species. At the
liquid/gas interface, the mass flux of the evaporating species
is the same in each phase. In terms of the liquid, this flux
may be written as

J(a) = p[VH(a’ 0(‘) - VH,B(C()]» (]5)

where J(«) is the evaporative flux at the free surface, p is the

liquid density, and V5 is the speed at which the boundary is

moving in the direction normal to itself. From Eq. (6), the

boundary condition on ¢ may then be written in terms of
Via,0)| o

@ R?sinh o’

o (cosh @’ +cos 6,)°

Wa.0,)=- Via',6)da’

@ R? sinh o’

o (cosh @' +cos 6,)°

X[J(a")p+ Vypla')lda'. (16)

II1. PINNED CONTACT LINE

When the droplet is pinned at the contact line, R is con-
stant and 6,=6.(r). Then the differential length through
which a da element of free surface moves during evapora-
tion is given by dxg(a)= [hya, 0)d0]|0(.. The corresponding
speed of the boundary, Vz=dxp/dt, is therefore

Vy5(@) =R(cosh a +cos 6,)7'(d6,/dr). (17)

In terms of an arbitrary evaporative flux distribution, the
interface stream function may be written from Egs. (16) and
(17) as
R? sinh o

a6, [ ,
o
o (cosh @’ +cos 6,)°

T odr

lﬂ(% ac) =

@ R? sinh o'

o (cosh @' +cos 6,)°

J(a')

da'. (18)

Upon completing the first integral, this reduces to

e 8) = — dﬁL.R_3< 1 1 )

dr 2 \(1+cos 0,)? " (cosh a+ cos 6.)?

f”‘ R? sinh o' J(a')
o (cosha'+cos ) p

do'. (18")
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For the stream function to be continuous between the free
surface and the substrate, the stream function must be zero as
the contact line is approached along the free surface; that is,
a—;0=0,)=0. Using this behavior in the above equa-
tion and rearranging, we obtain

sinh «

da.

de * J
< =— (2/R)(1 +cos 6,)? 5 (e)
dt o (cosha+cos6)” p

(19)

A wide range of evaporative flux distributions is possible
depending on the velocity distributions in the gas phase and
the degree of vacuum into which the evaporation occurs. In
the following sections two specific cases are investigated.

A. Uniform evaporative flux

In this case, the evaporative flux is uniform across the
surface of the drop:

J(a, 6,) = const = J,,. (20)
Consequently, Eq. (19) reduces to
dae, 2J
¢=—=2(1+cos 6,). (21)
dt Rp

Using Egs. (20) and (21), Eq. (18’) can be written as

R%J, (1
p(cosh a+ cos 6,)

1+ (7
- et

~ cosh @+ cos 0,

(22)
and, using Eq. (14) in conjunction with Eq. (A15) of the
Appendix, the expansion coefficient becomes

k(7) = (R*J,/p) \ET cosec 0, sech(m){l -2(1
+cos 6,)cosec 6,[7coth(76,) —cot 6,]}.  (23)

B. Diffusive evaporative flux

A commonly considered flux distribution corresponds to
diffusive mass transfer into a stagnant gas (i.e., absent even
the gas motion which naturally occurs due to the mass trans-
fer). This model leads to Laplace’s equation in toroidal co-
ordinates for the variation of vapor concentration throughout
the gas phase. Solution of this equation results in the follow-
ing evaporative mass flux distribution (see Popov [13]):

J(a,0,)=(Y, - Yoo)(pgD/R)<sin 0.2 + \2(cosh @+ cos 6,)>

“ cosh 6,
X J o8 c7-tanh[(ﬂ'— 0,.)7]

o cosh 7t
X P_jp4i-(cosh @) TdT), (24)

where P_j5,;,(x) is the conical function of the first kind, p, is
the density of the gaseous vapor-air mixture, D is the coef-
ficient of binary diffusion of the vapor in the gas phase, Y, is
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the vapor mass fraction in the gas phase at the droplet sur-
face (saturation value), and Y., is the far-field vapor mass
fraction in the gas phase.

Using Eq. (24) and Eq. (7-6-9) of Ref. [28], Eq. (19)
reduces to

dae D(Y,-Y, sin 6,
—C:—W(l+cos 6,2 —e
dt PR 1+cos 6,

fw 1 +cosh 26,7
p4| /T

o sinh27mr tanh[(”‘%)ﬂdr). (25)

(Note that Popov [13] used a different approach for deter-
mining d6,/dt.)

In the next section, particular cases of the above general
results are considered. Specifically, hemispherical drops and
drops having small contact angles (6,=0) are treated with
the following results given in each case: the evaporative flux
J(a), the rate of change of contact angle (d6,/dr) for pinned
contacts, the distribution of the stream function at the free
surface, A, 6,), and the expansion coefficient k(7).

1. Hemispherical shape, 0,= /2

For the hemispherical shape, 6.=/2, the diffusive
evaporative flux is uniformly distributed over the surface of
the drop [13,21]:

p DY, Y.)

J(a) = JR— =const. (26)

For 6.=m/2, Eq. (25) becomes

de. DY ,—Y,
d9. __ pD( : ) 27)
dt p(R/2)

As a result, the stream function distribution along the free
surface is given by

Wa,m2) = (28)

pgRD(Ys—Yw)<l_ 1 )
cosh «

p cosh
Using Eq. (14) in conjunction with Eq. (A15) of the Appen-
dix, the spectral coefficient is given by
k(7) = (p/ P)RD(Y, — Y.)\27 sech(7)[1 - 27 coth(rm/2)].
(29)

2. Small contact angle, 6.—0
For contact angles small enough such that cos 6,=1 and
sin §.= 6.=0, it is known that [13]
p.D(Y,— Y.)\2

_](a) = JR—_\r'COSh a+1, (30)
aa

which reduces Eq. (25) to

do, 16p,D(Y,- Y,
_Cz_ﬁ(-—z) (31)
dt mpR

and, consequently,
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2p.RD(Y,~ Y., 2 4
et 0) = LKLY )<\/ - 2).
P cosha+1 (cosha+1)

(32)

Using Eq. (14) in conjunction with Eq. (A15) of the Appen-
dix, the spectral coefficient is then given by

16\2p RD(Y, - Y.)  A(P+1)
3mp cosh(7r7)sinh(6,7)

k(7)=- (33)

IV. FREELY MOVING CONTACT LINE

When the drop is freely moving, the radial distance to the
contact line decreases with time R=R(). One condition pre-
viously considered for the freely moving case is that the
contact angle remains constant during evaporation (6,
=const). The speed of a spherical cap boundary in the normal
direction is the same as for the cylindrical cap boundary
analyzed by Petsi and Burganos [23] since both have the
same cross-sectional shape. This speed is given by

Vys(a) =sin 6, cosh a(cosh a +cos 6,)7'(dR/dt). (34)

In terms of an arbitrary evaporative flux distribution, the
interface stream function may be written from Egs. (16) and
(34) as

dR (“ R?sin 6, cosh ' sinh o'

90(‘ =—"
uan)=-4 [

a!

(cosh a' +cos 6,)°

“ R? sinh o' J(a')
- - 5 da', (35)
o (cosha' +cos6,)” p

which, upon completing the first integral, reduces to

dR , . 1+cos 6/2 cosh a+cos 6./2
M, 0,)=——R"sin 6, 5= 3
dt (1+cos 6.)" (cosha+cosb,)
“« R?sinh o' J(a'
e @) 1o (35)

o (cosha' +cos 6,)* p

For the stream function to be continuous, its value on the
free surface must vanish as the contact line is approached;
that is, ¥{a— o; #=6.)=0. Using this in the above equation
and rearranging, we obtain

dR (1 +cos 6,)* sinh a J()
dr— sin 6,(1+cos 6,/2) ), (cosh a+cos ) p

da.

(36)

Of the wide range of evaporative flux distributions that are
possible, the following sections investigate two specific
cases: uniform flux and the flux corresponding to purely dif-
fusive gas phase mass transfer.

A. Uniform evaporative flux

In this case, the evaporative flux is uniform over the sur-
face of the drop, that is,
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J(a,6,.) = const=J,. (37)

Consequently, Eq. (36) reduces to

drR  Jy 1 + cos 6. (38)
dr ~ psin 0,(1+cos 6/2)
Using Egs. (37) and (38), Eq. (35’) can be written as
R%J, cos 6,
lﬁ(a, 00) == 2
p (cosh a+cos 6,)(2+cos 6,)
1 +cos 6.
X|1-———]. (39)
cosh a + cos 6,

Then, using Eq. (14) in conjunction with Eq. (A15) of the
Appendix, the expansion coefficient becomes
k(1) =— (R*Jo/p) \ET cosec 6, sech(mr)cos 6,(2 +cos 6,)”!
X {1 =2(1 +cos 6,)cosec 8,[7coth(76,) — cot 6,]}.
(40)

B. Diffusive evaporative flux

The evaporative flux distribution is again given by Eq.
(24), which is repeated here:

J(a,0,)=(Y,— Yx)(pgD/R)<sin 0.2 + \E(cosh a+ cos 6,)%?

* cosh 6,
X f O BT tanh[ (7 — 6,)7]
o cosh w7

X P_j/p4i-(cosh a) TdT) .

Use of Eq. (24) and Eq. (7-6-9) of Ref. [28], reduces Eq. (36)
to

sin 6,

dR _ pD(Y,=Y.) (I+cos¥,)’ (

dr PR sin 6.(2 + cos 6,) \ 1 + cos 6,

fw 1 +cosh26,1
pq|

- tanh[ (7 - 6,) T]dT) ) (41)
o sinh2w7

Given below for freely moving contact lines in the limits of
hemispherical shape and small contact angle (6.=0) are the
following: the evaporative flux J(«), the rate of change of
droplet radius, (dR/drt), the stream function on the free sur-
face, Y(a, 6,), and the expansion coefficient k(7).

1. Hemispherical shape, 6,=1/2
Being hemispherical, the evaporative flux distribution is
uniform and is given again by Eq. (26):

DY, -Y,
J(a)= M = const.

R
For 6.=m/2, Eq. (41) becomes

PHYSICAL REVIEW E 79, 016301 (2009)

dR D(Y,-Y,
_=_BM' (42)
dt PR

Consequently, the stream function distribution along the free
surface becomes

Wa,7/2)=0. (43)

Therefore, the spectral coefficient for the freely moving con-
dition is

k()=0 (44)
and, hence, the velocity vanishes.

2. Small contact angle, 6,—0

For contact angles small enough such that cos 6.=1 and
sin 6,=0,=0, it is known that [13]

-

DY, - Y )V2 ———

J(a)=—g—p (1; )\—\Jcosha+1,
T

which reduces Eq. (41) to

dR _ 16pD(Y,~Y.) 45)

dr 3mw0.pR

and, consequently

2p,RD(Y, - Y, 2
Ha ) = LR )<\/
mp cosha+1

4(2 cosh a + 1))
3(cosha+1)? /"

(46)

Using Eq. (14) in conjunction with Eq. (A15) of the Appen-
dix, the spectral coefficient is given by

16\2p,RD(Y, - YV.) PL(7+1)/3-1]
37p cosh(7r7)sinh(6.7)

k(7)= (47)

V. VELOCITY DISTRIBUTION

Given the distribution of evaporative flux, J(a), the
boundary stream function ¢/ «, 6,) may be determined from
Eq. (16) for given distribution of the velocity normal to the
boundary, V5 (e.g., corresponding to contact lines which are
either pinned or freely moving, Eqs. (17) and (34), respec-
tively). Then, the coefficient k(7) in the eigenfunction expan-
sion for the stream function ¢{(«, #) may be evaluated from
Eq. (14). Finally, from («, 6), the velocity distribution may
be calculated. In toroidal coordinates the components of the
velocity follow from Egs. (5) and (6):

lﬁ(a» 6)

2 (cosh a+ cos 6)"?

V(a,6) =

(cosh & + cos 6)*? [ sin 0
R? sinh «

+ f k(7) 7 cosh(76)C; 52, (cosh a)df), (48)
0
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a,0)

2(cosh a + cos 6

Vg( a, 0) =

(cosh a + cos 6)*'?
12

R2

+ f“’ k(7)sinh(76) P_,5.;,(cosh a)dr). (49)
0

The velocity components in cylindrical coordinates are use-
ful for visualizing and physically interpreting the flow field.
The radial and axial components of the velocity are given by

V(a,6) =r (9 dz) = (cosh a + cos 6)~!
X[V, (1 + cosh a cos 6) + V,sinh « sin 6],
(50)

V.(a,0) =—r"'(dy/dr) = - (cosh a + cos )
X[V, sinh a sin 8- V(1 + cosh « cos 6)].
(51)

VI. RESULTS AND DISCUSSION

The flow patterns corresponding to pinned and freely
moving contact lines are computed for both uniform and
diffusive evaporative flux distributions. Comparisons are
made for the cases of wetting, nonwetting, and hemispherical
drops. The computed two-dimensional velocities are com-
pared to the radial distributions of the vertically averaged
velocities used in previous analyses [13,15-17],

1 h(r)
(V(r) = %fo Vr,z)dz, (52)

where V, is the radial component of the velocity and h(r) is
the thickness of the drop at a distance r from the axis of
symmetry.

The results are presented in terms of the dimensionless
stream function *=/1y, dimensionless velocity V*
=V/V,, and dimensionless evaporative flux J*=J/J,, in
which

o= RJy/p, (53)

Vo=Jo/p, (54)

and J is the characteristic evaporative flux, which, for dif-
fusive evaporation, is determined as

Jo=pD(Y = Y.)/R. (55)

A. Diffusive evaporative flux

The evaporative flux corresponding to diffusion through a
stagnant gas is shown in Fig. 2(a) for contact angles 120°,
90°, and 60°. These contact angles have been chosen to span
the range from nonwetting to wetting behavior. For contact
angles greater than 90°, the evaporative flux decays to zero
as (r/R)—1. For 6,=/2, the evaporative flux is uniform
over the free surface. For contact angles less than 90°, the
evaporative flux diverges at the contact line.

PHYSICAL REVIEW E 79, 016301 (2009)

(a)

[ o |
— 120 — .
a I

5 o N !
i 90 o I
L X I
B o I

Ar--mmmmmm - 60 [
| 0, (deg) I
i I

« |
J 3 1

B I
| I
a I

2F I
B /
- /7
a -~

B

0 Lo v L': L
0 0.2 0.4 0.6 0.8 1 1.2

TR — - I Ll T —
1 08 06 04 02 0 02 04 06 08 1
r/R

FIG. 2. (a) Nondimensional diffusive evaporative flux for con-
tact angles of 120°, 90°, and 60°. Inset: flux at r/R=0 versus con-
tact angle. (b) Hemispherical (6,=90°); contours of nondimensional
stream function (¢*=0.005, 0.03, 0.08, 0.15, and 0.22) for pinned
contact and uniform diffusive evaporative flux.

The flow generated by the evaporation is illustrated for
contact angles 120°, 90°, and 60°. Pinned and freely moving
contact line behaviors are shown in Figs. 2(b), 3, and 4.
When the contact line is pinned, the flow is directed from the
center of the drop to its edges (for colloidal suspensions, this
produces coffee-ring-like deposits). The character of pinned
flow remains the same even for contact angles greater than
90° where the evaporative flux distribution is quite different.
As expected, flow field calculations for 6.— /2 coincide
with those obtained from analyses performed in spherical
coordinates [21]. It is also noteworthy that, for #,=/2 and
freely moving contact lines, the velocity inside the drop van-
ishes. This occurs because V,p(a)=—J(a)/p for spherical
drops. On the other hand, when the contact line is freely
moving the flow pattern is more complicated. Flow both to-
ward and away from the edge exists within the drop. In these
cases it seems unlikely that coffee-ring-type deposition of
particles would occur during evaporation of a colloidal drop.
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1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

FIG. 3. Contours of nondimensional stream function (i*
=0.005, 0.03, 0.08, 0.15, and 0.22) for a pinned contact line, diffu-
sive evaporative flux, and contact angles of (a) 120° and (b) 60°.

B. Uniform evaporative flux

For uniform evaporative flux, the flow patterns computed
for different contact angles and contact line conditions are
illustrated in Figs. 5 and 6. Figure 5 shows that when the
contact line is pinned, the flow is from the center of the drop
to its edge. On the other hand, when the contact line is free to
move, distinctively different flow patterns are observed for
wetting (6, </2) and nonwetting (6,> 7/2) conditions—
see Fig. 6. (This is consistent with the observation previously
made for cylindrical caps [23].) For contact angles greater
than /2, the flow pattern for a freely moving contact line is
similar to a pinned contact line—Fig. 5(a). However, for
contact angles less than /2, the flow in the freely moving
case is from the edge of the drop toward its axis—opposite to
the flow behavior for the pinned case.

Finally, it is to be noted that, when the drop wets the
surface, the flow is directed from the center to the edge for a
pinned contact line, and from the edge toward the center
when the contact line is free to move. On the other hand, for
nonwetting drops, the flow is directed toward the edge for
both pinned and freely moving contact lines.

C. Approximate analyses compared to the exact result

At various radii, Fig. 7 compares the vertically averaged
radial velocity, Eq. (52), to the z variations of the exact so-
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o

(b) X
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FIG. 4. Contours of nondimensional stream function for a freely
moving contact line, diffusive evaporative flux, and contact angles
of (a) 120° (¢*=-0.007, —0.001, 0.0001, 0.002, 0.008, 0.017, and
0.027) and (b) 60° (y*=-0.0001, 0.0001, 0.001, 0.006, and 0.02).

lution and the small-contact-angle approximation. Shown are
the results for pinned contacts with contact angles of 40° and
10°. It is seen that, at higher contact angles, only the exact
solution faithfully represents the flow, particularly at radii
away from the centerline. However, at small contact angles,
Fig. 7(b) indicates a sharp decrease in the vertical variation
of the radial velocity. Consequently, the vertically averaged
velocity approach becomes an excellent approximation of the
entire flow field at relatively small contact angles. On the
other hand, Figs. 7 and 8 demonstrate that the small-contact-
angle approximation for pinned contacts, Eq. (33), is a good
approximation to the exact solution only for modest values
of (r/R) and small contact angles.
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APPENDIX: GEGENBAUER FUNCTION
AND ITS INTEGRAL TRANSFORM

Several mathematical relations involving Gegenbauer
function were needed but could not be found in the literature.
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(a) 3

1 08 06 04 02 0 02 04 06 08 1
r/R

FIG. 5. Contours of nondimensional stream function for a
pinned contact line, uniform evaporative flux, and contact angles of
(a) 120° (*=0.01, 0.05, 0.125, 0.24, and 0.38) and (b) 60° (y*
=0.005, 0.022, 0.05, 0.09, and 0.13).

This appendix develops those relations. Throughout the ap-
pendix, x=cosh a [correspondingly, a=cosh™'x, sinh «
=(x%-1)"2, and dx=sinh @ da].

The Gegenbauer function satisfy the following singular
Sturm-Liouville differential equation:

(2 =1Df"(x) + (7P + 1/4)f(x) =0, (A1)

where 7 is a parameter (eigenvalue) and the weighting func-
tion for normalization is (x>-~1)7!. The range of x in the
present problem is [1, «©). The orthogonality or normalization
condition for the Gegenbauer function is therefore

N(ry,m) = f (x 1)_1C_/12/ii71 (X)C_/lz/iifz(x)dx‘ (A2)
1

This may be evaluated from the orthogonality or normaliza-
tion condition of Legendre function [29] (weighting
function=1):

” 1 — 1)
f P_i24ir (X)P_y 24z, (X)dx = ——2— (A3

I 7, tanh(77))

Note that [27]

0.2 0.4 0.6 0.8 1

Q
Q
Q
1 0.8 0.6 0.4 0.2

z
(b) N

0.2

/'R

FIG. 6. Contours of nondimensional stream function for a freely
moving contact line, uniform evaporative flux, and contact angles
of (a) 120° (y*=0.005, 0.022, 0.05, 0.09, and 0.135) and (b) 60°
(*=-0.001, —0.005, -0.012, —0.021, and —0.03).

[
P_pyidx) == —C7h2 (%) (A4)

ox

and
J _
(- 1)£P—1/2+ir(x) =(7+1/4)Cips(x).  (AS5)

First, replace P_1,2+,-Tl(x) in Eq. (A3) by Eq. (A4). Then,
integrate by parts followed by replacing (d/ dx) P_j p,r,(x) in
the resulting integral by Eq. (A5). This yields the following
expression for the orthogonality or normalization of the Ge-
genbauer function:

| e, o, wa
1

_ o — 1)
7 tanh(ﬂ'q'l)(T]2 +1/4)°

(A6)

It then follows that the transform of a function f(x), defined
by
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FIG. 7. Nondimensional radial velocities versus vertical position
at different radial positions r/R=0.1, 0.3, 0.5, 0.7, and 0.9, for a
pinned contact line, diffusive evaporative flux, and contact angles of
(a) 40° and (b) 10°. The dash-dotted lines are from the small-
contact-angle approximation, the solid lines are from the exact so-
lution, and the dashed lines are from the vertically averaged radial
velocity.

()= J fEE =17 Cri (0dx, (A7)
1

has its inverse transform given by

flx)= f“’ o7+ 1/4)tanh(777')f‘<(T)Cf}z/f”(x)dr (A8)
0

In our experience, an efficient way for computing the Ge-
genbauer function is in terms of an integral relation. This
relation follows from substituting the integral representation
of the Legendre function [Eq. (7.4.2) of [25]],
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FIG. 8. Nondimensional vertical velocities versus vertical posi-
tion at different radial positions »/R=0.1, 0.3, 0.5, 0.7, and 0.9, for
a pinned contact line, diffusive evaporative flux, and contact angles
of (a) 40° and (b) 10°. The dashed lines are from the small-contact-
angle approximation and the solid lines are from the exact solution.

1 am
P, (x)= —J [x+(x*-1)"?cos y]‘(””)dy, (A9)
m™J 0

into the following relation between Gegenbauer and Leg-
endre functions [27]:

_ 1
1/12/31'7()6) = E_[P —3/2+i7'(x) -P 1/2+i7(x):|- (A10)

This yields the following integral representation of the Ge-
genbauer function:
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Cl_/lz/-%i’r(x)
1 f” [x+(>=1)"cos y> -1
0 [x+ (x2 _ 1)1/2 cos y]3/2+i7

= dy. (All)
2miT

In assessing convergence of the integrals appearing in the
solution, the asymptotic behaviors of the function are
needed. Using Eq. (A5) in conjunction with Egs. (4) and (6)
of [30] leads to

/ ! ,/i( _x
o P+ 14 N mar\ (-1

lim Cf/lziir(x) =
X sin[(cosh™ x) 7+ 7/4]
+ 7(x*> = 1)"* cos[(cosh™ x) 7+ 77/4]),

(A12)

2 |A|
lim CTY2 (x)=— F\/j—
lim Cuairl) == "2\ 5 g

y (cos[(cosh‘1 x)7+ Arg(A)]
2

+ rsin[(cosh™ x) 7+ Arg(A)]> .

(A13)

where

PHYSICAL REVIEW E 79, 016301 (2009)

I'(i7)

A=)

(A14)

in which I'(z) is the Gamma function [25]. From the repre-
sentation of the Gegenbauer function given by Eq. (All)
along with its asymptotic behavior from Eq. (A13), it is seen
that the transform will exist provided that lim,_,..[f(x)/x] is
finite and f(1)=0.

Finally, it is noted that the transform presented here, may
be related to the Mehler-Fock transform of zero order [28].
Using Eq. (A5) in Eq. (A7) and then integrating by parts
results in

J wf(x) (= 1) e (x)dx
1
= (72 + 1/4)_I ([_f(.x)P_l/2+iT .)C)jlc;C

_f f’(‘x)P—l/2+l‘T(‘x)dx)' (A15)
1

The last term is the Mehler-Fock transform of zero order of
the function f’(x). The transforms required in the present
study were evaluated from the above equation by using the
Mehler-Fock transforms tabulated in [28].
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